skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fredrickson, Glenn H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 8, 2026
  2. Complex fluids in confined geometries are found in numerous applications, including membranes, lubricants, and microelectronics. However, current computational approaches for studying these systems have a variety of shortcomings. Particle-based simulations are limited in accessible length and time scales, while the interaction parameters in field-theoretic approaches have no direct connections to specific chemistries. Here, we extend a multiscale framework that we earlier developed for bulk systems to address these challenges in confined polymer formulations. The methodology uses atomistic molecular dynamics simulations to parameterize coarse-grained field-theoretic models of confined fluids, which subsequently enable fast equilibration and the ability to surmount length scales inaccessible to particle-based simulation methods. We first use this workflow to study a model system consisting of a confined Gaussian fluid to validate and determine best practices for the coarse-graining methodology. Next, we demonstrate this methodology by applying it to an alkyl acrylic diblock copolymer and dodecane solution confined between α-iron oxide surfaces and examining the effect of diblock concentration and length on the structure of the adsorbed film. This approach has the potential to expedite the study of complex fluids in confined environments, bridging atomistic detail and mesoscale modeling with broad implications for materials design. 
    more » « less
    Free, publicly-accessible full text available July 14, 2026
  3. Abstract A general algorithm is introduced to compute single‐chain partition functions in field‐theoretic simulations of polymers with nested tree‐like topologies, including self‐consistent field theory simulations that invoke the mean‐field approximation. The algorithm is an extension of a method used in a number of recent studies on the phase behavior of bottlebrush block copolymers. In those studies, the computational cost of computing single‐chain partition functions is reduced by aggregating the statistical weight of degenerate side arms. By extending this method to chains with arbitrary degrees of branching, the computational cost is reduced to scale with the total length of unique segments in the chain instead of the total length/mass of the entire chain. The method is first validated on a model dendrimer system by comparing results to coarse‐grained molecular dynamics simulations and also demonstrate its advantage over more conventional approaches to compute single‐chain partition functions. The algorithm is subsequently used to analyze the phase behavior of a molecularly informed field‐theoretic model of poly(butyl acrylate)‐graft‐poly(dodecyl acrylate) (pBA‐graft‐pDDA) copolymers in a dodecane solvent. The methodology can help advance field‐theoretic investigations of branched polymers by leveraging degeneracy in the chain to reduce computational cost and avoid the need to develop architecture‐specific algorithms. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. Understanding the phase behavior and dynamics of multi-component polymeric systems is essential for designing materials used in applications ranging from biopharmaceuticals to consumer products. While computational tools for understanding the equilibrium properties of such systems are relatively mature, simulation platforms for investigating non-equilibrium behavior are comparatively less developed. Dynamic self-consistent field theory (DSCFT) is a method that retains essential microscopic thermodynamics while enabling a continuum-level understanding of multi-component, multi-phase diffusive transport. A challenge with DSCFT is its high computational complexity and cost, along with the difficulty of incorporating thermal fluctuations. External potential dynamics (EPD) offers a more efficient approach to studying inhomogeneous polymers out of equilibrium, providing similar accuracy to DSCFT but with significantly lower computational cost. In this work, we introduce an extension of EPD to enable efficient and stable simulations of multi-species, multi-component polymer systems while embedding thermodynamically consistent noise. We validate this framework through simulations of a triblock copolymer melt and spinodally decomposing binary and ternary polymer blends, demonstrating its capability to capture key features of phase separation and domain growth. Furthermore, we highlight the role of thermal fluctuations in early stage coarsening. This study provides new insights into the interplay between stochastic and deterministic effects in the dynamic evolution of polymeric fluids, with the EPD framework offering a robust and scalable approach for investigating the complex dynamics of multi-component polymeric materials. 
    more » « less
    Free, publicly-accessible full text available April 7, 2026
  5. Field-theoretic simulations are numerical methods for polymer field theory, which include fluctuation corrections beyond the mean-field level, successfully capturing various mesoscopic phenomena. Most field-theoretic simulations of polymeric fluids use the auxiliary field (AF) theory framework, which employs Hubbard–Stratonovich transformations for the particle-to-field conversion. Nonetheless, the Hubbard–Stratonovich transformation imposes significant limitations on the functional form of the non-bonded potentials. Removing this restriction on the non-bonded potentials will enable studies of a wide range of systems that require multi-body or more complex potentials. An alternative representation is the hybrid density-explicit auxiliary field theory (DE-AF), which retains both a density field and a conjugate auxiliary field for each species. While the DE-AF representation is not new, density-explicit field-theoretic simulations have yet to be developed. A major challenge is preserving the real and non-negative nature of the density field during stochastic evolution. To address this, we introduce positivity-preserving schemes that enable the first stable and efficient density-explicit field-theoretic simulations (DE-AF FTS). By applying the new method to a simple fluid, we find thermodynamically correct results at high densities, but the algorithm fails in the dilute regime. Nonetheless, DE-AF FTS is shown to be broadly applicable to dense fluid systems including a simple fluid with a three-body non-bonded potential, a homopolymer solution, and a diblock copolymer melt. 
    more » « less
    Free, publicly-accessible full text available December 28, 2025
  6. Free, publicly-accessible full text available December 10, 2025
  7. Supramolecular polymer networks exhibit unique and tunable thermodynamic and dynamic properties that are attractive for a wide array of applications, such as adhesives, rheology modifiers, and compatibilizers. Coherent states (CS) field theories have emerged as a powerful approach for describing the possibly infinite reaction products that result from associating polymers. Up to this point, CS theories have focused on relatively simple polymer architectures. In this work, we develop an extension of the CS framework to study polymers with reversible bonds distributed along the polymer backbone, opening a broad array of new materials that can be studied with theoretical methods. We use this framework to discern the role of reactive site placement on sol–gel phase behavior, including the prediction of a microstructured gel phase that has not been reported for neutral polymer gels. Our results highlight the subtleties of thermodynamics in supramolecular polymers and the necessity for theories that capture them. 
    more » « less